Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.294
Filtrar
1.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38582075

RESUMO

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Assuntos
Glicoproteínas , Proteoma , Proteômica , Fluxo de Trabalho , Humanos , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/química , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Cininogênios/metabolismo , Cininogênios/química , Polissacarídeos/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/química , Fibrinogênio/metabolismo , Fibrinogênio/química , alfa-2-Glicoproteína-HS/metabolismo , alfa-2-Glicoproteína-HS/análise
2.
Hereditas ; 161(1): 9, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374144

RESUMO

Congenital fibrinogen disorders are a group of coagulation deficiencies caused by fibrinogen defects and are divided into four types, including afibrinogenemia, hypofibrinogenemia, dysfibrinogenemia, and hypodysfibrinogenemia. In this study, we collected a family with hypofibrinogenemia, and genetics analysis identify a novel pathogenic variants (c.668G > C, p.Arg223Thr) in the FGG gene. And electron microscope observation revealed significant changes in the ultrastructure of fibrin of the proband. Our research expands the phenotypic and genetic spectrum associated with the FGG gene, which would facilitate in genetic counselling and prenatal genetic diagnosis.


Assuntos
Afibrinogenemia , Povo Asiático , Fibrinogênio , Humanos , Afibrinogenemia/genética , Afibrinogenemia/congênito , Afibrinogenemia/diagnóstico , Povo Asiático/genética , China , Fibrinogênio/genética , Fibrinogênio/química , Mutação
3.
J Phys Chem B ; 128(8): 1900-1914, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38289261

RESUMO

The competitive behavior of proteins in the reversible adsorption stage plays a crucial role in determining the composition of the protein layer and the subsequent biological responses to the biomaterial. However, such competitive adsorption is a mesoscopic process at physiological protein concentration, and neither a macroscopic experiment nor microscopic MD (molecular dynamics) simulation is suitable to clarify it. Here, we proposed a mesoscopic DPD (dissipative particle dynamics) model to illustrate the competitive process of albumin and fibrinogen on TiO2 surface with its parameters deduced from our previous MD simulation, and proved the model well retained the diffusion and adsorption properties of proteins in the competitive adsorption on the plane surface. We then applied the model to the competitive adsorption on the surfaces with different nanostructures and observed that when the nanostructure size is much larger than that of protein, the increase in surface area is the main influencing factor; when the nanostructure size is close to that of protein, the coordination between the nanostructure and the size and shape of protein significantly affects the competitive adsorption process. The model has revealed many mechanical phenomena observed in previous experimental studies and has the potential to contribute to the development of high-performance biomaterials.


Assuntos
Albuminas , Fibrinogênio , Fibrinogênio/química , Adsorção , Propriedades de Superfície , Materiais Biocompatíveis/química , Simulação de Dinâmica Molecular
4.
J Biomed Mater Res A ; 112(3): 373-389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37902409

RESUMO

Biomaterials with nanoscale topography have been increasingly investigated for medical device applications to improve tissue-material interactions. This study assessed the impact of nanoengineered titanium surface domain sizes on early biological responses that can significantly affect tissue interactions. Nanostructured titanium coatings with distinct nanoscale surface roughness were deposited on quartz crystal microbalance with dissipation (QCM-D) sensors by physical vapor deposition. Physico-chemical characterization was conducted to assess nanoscale surface roughness, nano-topographical morphology, wettability, and atomic composition. The results demonstrated increased projected surface area and hydrophilicity with increasing nanoscale surface roughness. The adsorption properties of albumin and fibrinogen, two major plasma proteins that readily encounter implanted surfaces, on the nanostructured surfaces were measured using QCM-D. Significant differences in the amounts and viscoelastic properties of adsorbed proteins were observed, dependent on the surface roughness, protein type, protein concentration, and protein binding affinity. The impact of protein adsorption on subsequent biological responses was also examined using qualitative and quantitative in vitro evaluation of human platelet adhesion, aggregation, and activation. Qualitative platelet morphology assessment indicated increased platelet activation/aggregation on titanium surfaces with increased roughness. These data suggest that nanoscale differences in titanium surface roughness influence biological responses that may affect implant integration.


Assuntos
Fibrinogênio , Titânio , Humanos , Adsorção , Fibrinogênio/química , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Albuminas
5.
Anal Bioanal Chem ; 416(1): 21-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837539

RESUMO

Fibrinogen as a major inflammation marker and blood coagulation factor has a direct impact on the health of humanity. The variations in fibrinogen content lead to risky conditions such as bleeding and cardiovascular diseases. So, accurate methods for monitoring of this glycoprotein are of high importance. The conventional methods, such as the Clauss method, are time consuming and require highly specialized expert analysts. The development of fast, simple, easy to use, and inexpensive methods is highly desired. In this way, biosensors have gained outstanding attention since they offer means for performing analyses at the points-of-care using self-testing devices, which can be applied outside of clinical laboratories or hospital. This review indicates that different electrochemical and optical sensors have been successfully implemented for the detection of fibrinogen under normal levels of fibrinogen in plasma. The biosensors for the detection of fibrinogen have been designed based on the quartz crystal microbalance, field-effect transistor, electrochemical impedance spectroscopy, amperometry, surface plasmon resonance, localized surface plasmon resonance, and colorimetric techniques. Also, this review demonstrates the utility of the application of nanoparticles in different detection techniques.


Assuntos
Técnicas Biossensoriais , Fibrinogênio , Fibrinogênio/química , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície , Colorimetria
6.
Front Immunol ; 14: 1221108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828992

RESUMO

Staphylococcus aureus pathology is caused by a plethora of virulence factors able to combat multiple host defence mechanisms. Fibrinogen (Fg), a critical component in the host coagulation cascade, plays an important role in the pathogenesis of this bacterium, as it is the target of numerous staphylococcal virulence proteins. Amongst its secreted virulence factors, coagulase (Coa) and Extracellular fibrinogen-binding protein (Efb) share common Fg binding motives and have been described to form a Fg shield around staphylococcal cells, thereby allowing efficient bacterial spreading, phagocytosis escape and evasion of host immune system responses. Targeting these proteins with monoclonal antibodies thus represents a new therapeutic option against S. aureus. To this end, here we report the selection and characterization of fully human, sequence-defined, monoclonal antibodies selected against the C-terminal of coagulase. Given the functional homology between Coa and Efb, we also investigated if the generated antibodies bound the two virulence factors. Thirteen unique antibodies were isolated from naïve antibodies gene libraries by antibody phage display. As anticipated, most of the selected antibodies showed cross-recognition of these two proteins and among them, four were able to block the interaction between Coa/Efb and Fg. Furthermore, our monoclonal antibodies could interact with the two main Fg binding repeats present at the C-terminal of Coa and distinguish them, suggesting the presence of two functionally different Fg-binding epitopes.


Assuntos
Coagulase , Infecções Estafilocócicas , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Proteínas de Bactérias , Coagulase/imunologia , Fibrinogênio/química , Fibrinogênio/metabolismo , Fagocitose , Staphylococcus aureus , Fatores de Virulência/metabolismo , Sítios de Ligação de Anticorpos
7.
Thromb Res ; 230: 1-10, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598635

RESUMO

BACKGROUND: Cranial and extra-cranial vascular events are among the major determinants of morbidity and mortality in Giant Cell Arteritis (GCA). Vascular events seem mostly of inflammatory nature, although the precise pathogenetic mechanisms are still unclear. We investigated the role of oxidation-induced structural and functional fibrinogen modifications in GCA. The effects of the anti-IL6R tocilizumab in counteracting these mechanisms were also assessed. MATERIALS AND METHODS: A cross-sectional study was conducted on 65 GCA patients and 65 matched controls. Leucocyte reactive oxygen species (ROS) production, redox state, and fibrinogen structural and functional features were compared between patients and controls. In 19 patients receiving tocilizumab, pre vs post treatment variations were assessed. RESULTS: GCA patients displayed enhanced blood lymphocyte, monocyte and neutrophil ROS production compared to controls, with an increased plasma lipid peroxidation and a reduced total antioxidant capacity. This oxidative impairment resulted in a sustained fibrinogen oxidation (i.e. dityrosine content 320 (204-410) vs 136 (120-176) Relative Fluorescence Units (RFU), p < 0.0001), with marked alterations in fibrinogen secondary and tertiary structure [intrinsic fluorescence: 134 (101-227) vs 400 (366-433) RFU, p < 0.001]. Structural alterations paralleled a remarkable fibrinogen functional impairment, with a reduced ability to polymerize into fibrin and a lower fibrin susceptibility to plasmin-induced lysis. In patients receiving tocilizumab, a significant improvement in redox status was observed, accompanied by a significant improvement in fibrinogen structural and functional features (p < 0.001). CONCLUSIONS: An impaired redox status accounts for structural and functional fibrinogen modifications in GCA, suggesting a potential role of tocilizumab for cardiovascular prevention in GCA.


Assuntos
Arterite de Células Gigantes , Hemostáticos , Humanos , Arterite de Células Gigantes/tratamento farmacológico , Interleucina-6 , Espécies Reativas de Oxigênio , Fibrinogênio/química , Estudos Transversais , Fibrina
8.
Adv Healthc Mater ; 12(27): e2300096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611209

RESUMO

Fibrin provides the main structural integrity and mechanical strength to blood clots. Failure of fibrin clots can result in life-threating complications, such as stroke or pulmonary embolism. The dependence of rupture resistance of fibrin networks (uncracked and cracked) on fibrin(ogen) concentrations in the (patho)physiological 1-5 g L-1 range is explored by performing the ultrastructural studies and theoretical analysis of the experimental stress-strain profiles available from mechanical tensile loading assays. Fibrin fibers in the uncracked network stretched evenly, whereas, in the cracked network, fibers around the crack tip showed greater deformation. Unlike fibrin fibers in cracked networks formed at the lower 1-2.7 g L-1 fibrinogen concentrations, fibers formed at the higher 2.7-5 g L-1 concentrations align and stretch simultaneously. Cracked fibrin networks formed in higher fibrinogen solutions are tougher yet less extensible. Statistical modeling revealed that the characteristic strain for fiber alignment, crack size, and fracture toughness of fibrin networks control their rupture resistance. The results obtained provide a structural and biomechanical basis to quantitatively understand the material properties of blood plasma clots and to illuminate the mechanisms of their rupture.


Assuntos
Hemostáticos , Trombose , Humanos , Fibrina/química , Fenômenos Biomecânicos , Fibrinogênio/química
9.
Langmuir ; 39(34): 12270-12282, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37586045

RESUMO

Amphiphilic copolymers comprising hydrophilic segments of poly(ethylene glycol) and hydrophobic domains that are able to adhere to solid/liquid interfaces have proven to be versatile ingredients in formulated products for various types of applications. Recently, we have reported the successful synthesis of a copolymer designed for modifying the surface properties of polyesters as mimics for synthetic textiles. Using sum frequency generation (SFG) spectroscopy, it was shown that the newly developed copolymer adsorbs effectively on the targeted substrates even in the presence of surfactants as supplied by common detergents. In the present work, these studies were extended to evaluate the ability of the formed copolymer adlayers to passivate polyester surfaces against undesired deposition of bio(macro)molecules, as represented by fibrinogen as model protein foulants. In addition, SFG spectroscopy was used to elucidate the structure of fibrinogen at the interface between polyester and water. To complement the obtained data with an independent technique, analogous experiments were performed using quartz-crystal microbalance with dissipation monitoring for the detection of the relevant interfacial processes. Both methods give consistent results and deliver a holistic picture of brush copolymer adsorption on polyester surfaces and subsequent antiadhesive effects against proteins under different conditions representing the targeted application in home care products.


Assuntos
Polímeros , Quartzo , Adsorção , Análise Espectral/métodos , Propriedades de Superfície , Poliésteres , Fibrinogênio/química
10.
J Mater Chem B ; 11(32): 7663-7674, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37458393

RESUMO

Every year, there are approximately 500 000 peripheral nerve injury (PNI) procedures due to trauma in the US alone. Autologous and acellular nerve grafts are among current clinical repair options; however, they are limited largely by the high costs associated with donor nerve tissue harvesting and implant processing, respectively. Therefore, there is a clinical need for an off-the-shelf nerve graft that can recapitulate the native microenvironment of the nerve. In our previous work, we created a hydrogel scaffold that incorporates mechanical and biological cues that mimic the peripheral nerve microenvironment using chemically modified hyaluronic acid (HA). However, with our previous work, the degradation profile and cell adhesivity was not ideal for tissue regeneration, in particular, peripheral nerve regeneration. To improve our previous hydrogel, HA was conjugated with fibrinogen using Michael-addition to assist in cell adhesion and hydrogel degradability. The addition of the fibrinogen linker was found to contribute to faster scaffold degradation via active enzymatic breakdown, compared to HA alone. Additionally, cell count and metabolic activity was significantly higher on HA conjugated fibrinogen compared previous hydrogel formulations. This manuscript discusses the various techniques deployed to characterize our new modified HA fibrinogen chemistry physically, mechanically, and biologically. This work addresses the aforementioned concerns by incorporating controllable degradability and increased cell adhesivity while maintaining incorporation of hyaluronic acid, paving the pathway for use in a variety of applications as a multi-purpose tissue engineering platform.


Assuntos
Engenharia Tecidual , Engenharia Tecidual/métodos , Hidrogéis/química , Ácido Hialurônico/química , Fibrinogênio/química , Animais , Ratos , Linhagem Celular
11.
Transfus Med ; 33(5): 398-402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37483014

RESUMO

BACKGROUND: Cryoprecipitate is used primarily to replenish fibrinogen levels in patients. Little is known about the presence of micro- or nano-sized particles in cryoprecipitate. Therefore, we aimed to quantify these particles and investigate some pre-analytical considerations. MATERIALS AND METHODS: Particle concentration and size distribution were determined in 10 cryoprecipitate units by nanoparticle tracking analysis (NTA). The effects of freeze-thawing cryoprecipitate and 0.45 µm filtration with either regenerated cellulose (RC) or polytetrafluoroethylene (PTFE) filters before sample analysis were examined. RESULTS: Neither the size nor concentration of particles were affected by two freeze/thaw cycles. PTFE filtration, but not RC filtration, significantly reduced particle mean and mode size compared to RC filtration and mode size compared to unfiltered cryoprecipitate. The 10 cryoprecipitate units had an average particle concentration of 2.50 × 1011 ± 1.10 × 1011 particles/mL, a mean particle size of 133.8 ± 7.5 nm and a mode particle size of 107.9 ± 11.1 nm. CONCLUSION: This study demonstrated that preanalytical filtration of cryoprecipitate units using RC filters was suitable for NTA. An additional freeze/thaw cycle did not impact NTA parameters, suggesting that aliquoting cryoprecipitate units prior to laboratory investigations is suitable for downstream analyses.


Assuntos
Fator VIII , Fibrinogênio , Nanopartículas , Humanos , Nanopartículas/análise , Tamanho da Partícula , Politetrafluoretileno , Fator VIII/química , Fibrinogênio/química , Filtração
12.
Biochemistry ; 62(14): 2170-2181, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37410946

RESUMO

Coagulation Factor XIII (FXIII) stabilizes blood clots by cross-linking glutamines and lysines in fibrin and other proteins. FXIII activity in the fibrinogen αC region (Fbg αC 221-610) is critical for clot stability and growth. Fbg αC 389-402 is a binding site for thrombin-activated FXIII, (FXIII-A*), with αC E396 promoting FXIII-A* binding and activity in αC. The current study aimed to discover additional residues within Fbg αC 389-402 that accelerate transglutaminase activity toward αC. Electrostatic αC residues (E395, E396, and D390), hydrophobic αC residues (W391 and F394), and residues αC 328-425 were studied by mutations to recombinant Fbg αC 233-425. FXIII activity was monitored through MS-based glycine ethyl ester (GEE) cross-linking and gel-based fluorescence monodansylcadaverine (MDC) cross-linking assays. Truncation mutations 403 Stop (Fbg αC 233-402), 389 Stop (Fbg αC 233-388), and 328 Stop (Fbg αC 233-327) reduced Q237-GEE and MDC cross-linking compared to wild-type (WT). Comparable cross-linking between 389 Stop and 328 Stop showed that FXIII is mainly affected by the loss of Fbg αC 389-402. Substitution mutations E396A, D390A, W391A, and F394A decreased cross-linking relative to WT, whereas E395A, E395S, E395K, and E396D had no effect. Similar FXIII-A* activities were observed for double mutants (D390A, E396A) and (W391A, E396A), relative to D390A and W391A, respectively. In contrast, cross-linking was reduced in (F394A, E396A), relative to F394A. In conclusion, Fbg αC 389-402 boosts FXIII activity in Fbg αC, with D390, W391, and F394 identified as key contributors in enhancing αC cross-linking.


Assuntos
Fator XIII , Fibrinogênio , Fator XIII/genética , Fator XIII/química , Fator XIII/metabolismo , Eletricidade Estática , Fibrinogênio/química , Fator XIIIa/genética , Fator XIIIa/metabolismo , Interações Hidrofóbicas e Hidrofílicas
13.
ACS Appl Bio Mater ; 6(7): 2667-2676, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37368548

RESUMO

Medical devices that are inserted in blood vessels always risk eliciting thrombosis, and the surface properties of such devices are thus of major importance. The initiating step for surface-induced pathological coagulation has been associated with adsorption of fibrinogen protein on biomaterial surfaces and subsequent polymerization into an insoluble fibrin clot. This issue gives rise to an inherent challenge in biomaterial design as varied surface materials must fulfill specialized roles while also minimizing thrombotic complications from spontaneous fibrin(ogen) recruitment. We have aimed to characterize the thrombogenic properties of state-of-the-art cardiovascular biomaterials and medical devices by quantifying the relative surface-dependent adsorption and formation of fibrin followed by analysis of the resulting morphologies. We identified stainless steel and amorphous fluoropolymer as comparatively preferable biomaterials based on their low fibrin(ogen) recruitment, in comparison to other metallic and polymeric biomaterials, respectively. In addition, we observed a morphological trend that fibrin forms fiber structures on metallic surfaces and fractal branched structures on polymeric surfaces. Finally, we used vascular guidewires as clotting substrates and found that fibrin adsorption depends on parts of the guidewire that are exposed, and we correlated the morphologies on uncoated guidewires with those formed on raw stainless-steel biomaterials.


Assuntos
Materiais Biocompatíveis , Trombose , Humanos , Materiais Biocompatíveis/química , Fibrina/química , Fibrina/metabolismo , Adsorção , Coagulação Sanguínea , Fibrinogênio/química , Fibrinogênio/metabolismo , Trombose/prevenção & controle , Polímeros
14.
J Thromb Haemost ; 21(10): 2747-2758, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336436

RESUMO

BACKGROUND: Previous studies identified decreased clot permeability, without differences in fibrin fiber density in clots, from patients with cirrhosis compared with those from healthy controls (HCs). Fibrinogen hypersialylation could be the reason for this discrepancy. OBJECTIVES: The aim of this work was to study mechanical properties of clots and reassess clot permeability in relation to hypersialylation in patients with stable cirrhosis, acute decompensation, and acute-on-chronic liver failure (ACLF). Sepsis patients without liver disease were included to distinguish between liver-specific and inflammation-driven phenotypes. METHODS: Pooled plasma was used for rheology and permeability experiments. Permeability was assessed with compression using a rheometer and by liquid permeation. Purified fibrinogen treated with neuraminidase was used to study the effects of fibrinogen hypersialylation on liquid permeation. RESULTS: Mechanical properties of clots from patients with stable cirrhosis and acute decompensation were similar to those of clots from HCs, but clots from patients with ACLF were softer and ruptured at lower shear stress. Clots from sepsis patients without liver disease were stiffer than those from the other groups, but this effect disappeared after adjusting for increased plasma fibrinogen concentrations. Permeability was similar between clots under compression from HCs and clots under compression from patients but decreased with increasing disease severity in liquid permeation. Removal of fibrinogen sialic acid residues increased permeability more in patients than in controls. CONCLUSION: Clots from patients with ACLF have weak mechanical properties despite unaltered fibrin fiber density. Previous liquid permeation experiments may have erroneously concluded that clots from patients with ACLF are prothrombotic as fibrinogen hypersialylation leads to underestimation of clot permeability in this setting, presumably due to enhanced water retention.


Assuntos
Insuficiência Hepática Crônica Agudizada , Hemostáticos , Sepse , Trombose , Humanos , Fibrina/química , Fibrinogênio/química , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Fibrose , Sepse/complicações , Fibrinólise
15.
Biosensors (Basel) ; 13(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37366972

RESUMO

The interactions that nanoparticles have with blood proteins are crucial for their fate in vivo. Such interactions result in the formation of the protein corona around the nanoparticles, and studying them aids in nanoparticle optimization. Quartz crystal microbalance with dissipation monitoring (QCM-D) can be used for this study. The present work proposes a QCM-D method to study the interactions on polymeric nanoparticles with three different human blood proteins (albumin, fibrinogen and γ-globulin) by monitoring the frequency shifts of sensors immobilizing the selected proteins. Bare PEGylated and surfactant-coated poly-(D,L-lactide-co-glycolide) nanoparticles are tested. The QCM-D data are validated with DLS and UV-Vis experiments in which changes in the size and optical density of nanoparticle/protein blends are monitored. We find that the bare nanoparticles have a high affinity towards fibrinogen and γ-globulin, with measured frequency shifts around -210 Hz and -50 Hz, respectively. PEGylation greatly reduces these interactions (frequency shifts around -5 Hz and -10 Hz for fibrinogen and γ-globulin, respectively), while the surfactant appears to increase them (around -240 Hz and -100 Hz and -30 Hz for albumin). The QCM-D data are confirmed by the increase in the nanoparticle size over time (up to 3300% in surfactant-coated nanoparticles), measured by DLS in protein-incubated samples, and by the trends of the optical densities, measured by UV-Vis. The results indicate that the proposed approach is valid for studying the interactions between nanoparticles and blood proteins, and the study paves the way for a more comprehensive analysis of the whole protein corona.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Técnicas de Microbalança de Cristal de Quartzo/métodos , Nanopartículas/química , Fibrinogênio/química , Albuminas , Tensoativos , gama-Globulinas
16.
Int J Biol Macromol ; 243: 125255, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295701

RESUMO

In preclinical studies, human hair has demonstrated effective hemostatic properties, potentially attributed to keratin proteins facilitating rapid conversion of fibrinogen to fibrin during coagulation. However, the rational use of human hair keratin for hemostasis remains unclear, given its complex mixture of proteins with diverse molecular weights and structures, leading to variable hemostatic capacity. To optimize the rational utilization of human hair keratin for hemostasis, we investigated the effects of different keratin fractions on keratin-mediated fibrinogen precipitation using a fibrin generation assay. Our study focused on high molecular weight keratin intermediate filaments (KIFs) and lower molecular weight keratin-associated proteins (KAPs) combined in various ratios during the fibrin generation. Scanning electron microscope analysis of the precipitates revealed a filamentous pattern with a broad distribution of fiber diameters, likely due to the diversity of keratin mixtures involved. An equal proportion of KIFs and KAPs in the mixture yielded the most extensive precipitation of soluble fibrinogen in an in vitro study, potentially due to structure-induced exposure of active sites. However, all hair protein samples exhibited diverse catalytic behaviors compared to thrombin, highlighting the potential of utilizing specific hair fractions to develop hair protein-based hemostatic materials with optimized capacity.


Assuntos
Hemostáticos , Humanos , Hemostáticos/farmacologia , Fibrinogênio/química , Queratinas Específicas do Cabelo , Hemostasia , Fibrina/química
17.
Phys Rev E ; 107(2-1): 024413, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932478

RESUMO

Fibrin gelation involves the enzymatic conversion of the plasma protein fibrinogen to fibrin monomers which then polymerize to form the gel that is a major structural component of a blood clot. Because fibrinogen provides the material from which fibrin is made, it is generally regarded as promoting the gelation process. However, fibrinogen can bind to a site on a fibrin oligomer, preventing another fibrin oligomer from binding there, thus slowing the polymerization process. "Soluble fibrin oligomers," which are mixtures of fibrin and fibrinogen, are found in the blood plasma and serve as biomarkers for various clotting disorders, so understanding the interplay between fibrin and fibrinogen during fibrin polymerization may have medical importance. We present a kinetic gelation model of fibrin polymerization which accounts for the dual and antagonistic roles of fibrinogen. It builds on our earlier model of fibrin polymerization that proposed a novel mechanism for branch formation, which is a necessary component of gelation. This previous model captured salient experimental observations regarding the determinants of the structure of the gel, but did not include fibrinogen binding. Here, we add to that model reactions between fibrinogen and fibrin, so oligomers are now mixtures of fibrin and fibrinogen, and characterizing their dynamics leads to equations of substantially greater complexity than previously. Using a moment generating function approach, we derive a closed system of moment equations and we track their dynamics until the finite time blow-up of specific second moments indicates that a gel has formed. In simulations begun with an initial mixture of fibrin and fibrinogen monomers, a sufficiently high relative concentration of fibrinogen prevents gelation; the critical concentration increases with the branch formation rate. In simulations begun with only fibrinogen monomers that are converted to fibrin at a specified rate, the rates of conversion, fibrinogen binding to oligomers, and branch formation together determine whether a gel forms, how long it takes to form, and the structural properties of the gel that results.


Assuntos
Fibrina , Fibrinogênio , Fibrina/química , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Trombina/metabolismo , Polimerização
18.
J Phys Chem Lett ; 14(13): 3139-3145, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961304

RESUMO

Interfacial proteins play important roles in many research fields and applications, such as biosensors, biomedical implants, nonfouling coatings, etc. Directly probing interfacial protein behavior at buried solid/liquid and liquid/liquid interfaces is challenging. We used sum frequency generation vibrational spectroscopy and a Hamiltonian data analysis method to monitor the molecular structure of fibrinogen on silicone oil during the adsorption process in situ in real time. The results showed that the adsorbed fibrinogen molecules tend to adopt a bent structure throughout the entire adsorption process with the same orientation. This is different from the case of adsorbed fibrinogen on CaF2 with a linear structure or on polystyrene with a bent structure but a different orientation. The method introduced herein is generally applicable for following time-dependent molecular structures of many other proteins and peptides at interfaces in situ in real time at the molecular level.


Assuntos
Fibrinogênio , Óleos de Silicone , Estrutura Molecular , Fibrinogênio/química , Adsorção , Peptídeos/química
19.
Biomech Model Mechanobiol ; 22(3): 851-869, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36648698

RESUMO

The deformation mechanism of fibrin fibers has been a long-standing challenge to uncover due to the fiber's complex structure and mechanical behaviors. In this paper, a phenomenological, bilinear, force-strain model is derived to accurately reproduce the fibrin fiber force-strain curve, and then, the phenomenological model is converted to a mechanistic model using empirical relationships developed from particle simulation data. The mechanistic model assumes that the initial linear fibrin fiber force-strain response is due to entropic extension of polypeptide chains, and the final linear response is due to enthalpic extension of protofibrils. This model is the first fibrin fiber tensile force-strain equation to simultaneously (1) reproduce the bilinear force-strain curve of fibrin fibers in tension; (2) explicitly include the number of protofibrils through the fibrin fiber cross section, persistence length of [Formula: see text]-regions, and stiffness of fibrin protofibrils; and (3) make demonstrably reasonable/accurate predictions of fibrin fiber mechanics when tempered against experimental results. The model predicted that the count of protofibrils through the cross section for the analyzed fibrin fibers is between 207 and 421, the persistence length of [Formula: see text]-regions is [Formula: see text], and the stiffness of protofibrils in a deforming fiber is [Formula: see text]. The predicted [Formula: see text]-region persistence length is within the range typical of amino acid residue lengths [Formula: see text] and the predicted protofibril stiffness is shown to correspond to half-staggered protofibrils of unfolded fibrin monomers. Our analysis supports the proposition that entropic extension of [Formula: see text]-regions could be responsible for fibrin fiber's initial force-strain stiffness and suggests a structural change in fibrin protofibrils during fibrin fiber deformation. The results from the model are compared to those from five candidate deformation mechanisms reported in the literature. Our work provides (1) strong quantitative support to a deformation mechanism that was previously supported by anecdote and qualitative argument, and (2) a model for rigorously analyzing fibrin fiber force-strain data and simulating fibrin fibers in tension.


Assuntos
Fibrina , Fibrinogênio , Fibrina/química , Fibrinogênio/química , Fibrinogênio/metabolismo
20.
Adv Healthc Mater ; 12(13): e2202508, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36691300

RESUMO

Control of protein adsorption is essential for successful integration of healthcare materials into the body. Human plasma fibrinogen (HPF), especially its conformation is a key upstream regulator for platelet behavior and thus pathological clot formation at the blood-biomaterial interface. A previous study by the authors revealed that the conformation of adsorbed HPF can be controlled by rutile surface crystallographic orientation. Therefore, it is hypothesized that pre-adsorbed HPF on specific rutile orientation can regulate platelets adhesion and activation. Here, it is shown that platelets exposed to the four low index (110), (100), (101), (001) facets of TiO2 (rutile) exhibit surface-specific behavior. Scanning electron microscopy (SEM) observations of platelets morphology and P-selectin expression measurement revealed that on (110) facets, platelets adhesion and activation are suppressed. In contrast, extensive surface coverage by fully activated platelets is observed on (001) facets. Platelets' behavior has been linked to the HPF conformation and thereby availability of platelet-binding sequences. Atomic force microscopy (AFM) imaging supported by immunochemical analysis shows that on (110) facets, HPF is adsorbed in trinodular conformation rendering the γ400-411 platelet-binding sequence inaccessible. This research has potential implications on the bioactivity of different materials crystal facets, reducing the risk of pathological clot formation and thromboembolic complications.


Assuntos
Fibrinogênio , Hemostáticos , Humanos , Fibrinogênio/química , Adesividade Plaquetária , Titânio/farmacologia , Titânio/química , Plaquetas/metabolismo , Hemostáticos/farmacologia , Adsorção , Propriedades de Superfície , Ativação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...